3.1403 \(\int \frac{5-x}{(3+2 x)^2 \sqrt{2+3 x^2}} \, dx\)

Optimal. Leaf size=55 \[ -\frac{13 \sqrt{3 x^2+2}}{35 (2 x+3)}-\frac{41 \tanh ^{-1}\left (\frac{4-9 x}{\sqrt{35} \sqrt{3 x^2+2}}\right )}{35 \sqrt{35}} \]

[Out]

(-13*Sqrt[2 + 3*x^2])/(35*(3 + 2*x)) - (41*ArcTanh[(4 - 9*x)/(Sqrt[35]*Sqrt[2 + 3*x^2])])/(35*Sqrt[35])

________________________________________________________________________________________

Rubi [A]  time = 0.0249547, antiderivative size = 55, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {807, 725, 206} \[ -\frac{13 \sqrt{3 x^2+2}}{35 (2 x+3)}-\frac{41 \tanh ^{-1}\left (\frac{4-9 x}{\sqrt{35} \sqrt{3 x^2+2}}\right )}{35 \sqrt{35}} \]

Antiderivative was successfully verified.

[In]

Int[(5 - x)/((3 + 2*x)^2*Sqrt[2 + 3*x^2]),x]

[Out]

(-13*Sqrt[2 + 3*x^2])/(35*(3 + 2*x)) - (41*ArcTanh[(4 - 9*x)/(Sqrt[35]*Sqrt[2 + 3*x^2])])/(35*Sqrt[35])

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{5-x}{(3+2 x)^2 \sqrt{2+3 x^2}} \, dx &=-\frac{13 \sqrt{2+3 x^2}}{35 (3+2 x)}+\frac{41}{35} \int \frac{1}{(3+2 x) \sqrt{2+3 x^2}} \, dx\\ &=-\frac{13 \sqrt{2+3 x^2}}{35 (3+2 x)}-\frac{41}{35} \operatorname{Subst}\left (\int \frac{1}{35-x^2} \, dx,x,\frac{4-9 x}{\sqrt{2+3 x^2}}\right )\\ &=-\frac{13 \sqrt{2+3 x^2}}{35 (3+2 x)}-\frac{41 \tanh ^{-1}\left (\frac{4-9 x}{\sqrt{35} \sqrt{2+3 x^2}}\right )}{35 \sqrt{35}}\\ \end{align*}

Mathematica [A]  time = 0.0218738, size = 55, normalized size = 1. \[ -\frac{13 \sqrt{3 x^2+2}}{35 (2 x+3)}-\frac{41 \tanh ^{-1}\left (\frac{4-9 x}{\sqrt{35} \sqrt{3 x^2+2}}\right )}{35 \sqrt{35}} \]

Antiderivative was successfully verified.

[In]

Integrate[(5 - x)/((3 + 2*x)^2*Sqrt[2 + 3*x^2]),x]

[Out]

(-13*Sqrt[2 + 3*x^2])/(35*(3 + 2*x)) - (41*ArcTanh[(4 - 9*x)/(Sqrt[35]*Sqrt[2 + 3*x^2])])/(35*Sqrt[35])

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 53, normalized size = 1. \begin{align*} -{\frac{41\,\sqrt{35}}{1225}{\it Artanh} \left ({\frac{ \left ( 8-18\,x \right ) \sqrt{35}}{35}{\frac{1}{\sqrt{12\, \left ( x+3/2 \right ) ^{2}-36\,x-19}}}} \right ) }-{\frac{13}{70}\sqrt{3\, \left ( x+3/2 \right ) ^{2}-9\,x-{\frac{19}{4}}} \left ( x+{\frac{3}{2}} \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5-x)/(3+2*x)^2/(3*x^2+2)^(1/2),x)

[Out]

-41/1225*35^(1/2)*arctanh(2/35*(4-9*x)*35^(1/2)/(12*(x+3/2)^2-36*x-19)^(1/2))-13/70/(x+3/2)*(3*(x+3/2)^2-9*x-1
9/4)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.49572, size = 72, normalized size = 1.31 \begin{align*} \frac{41}{1225} \, \sqrt{35} \operatorname{arsinh}\left (\frac{3 \, \sqrt{6} x}{2 \,{\left | 2 \, x + 3 \right |}} - \frac{2 \, \sqrt{6}}{3 \,{\left | 2 \, x + 3 \right |}}\right ) - \frac{13 \, \sqrt{3 \, x^{2} + 2}}{35 \,{\left (2 \, x + 3\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)/(3+2*x)^2/(3*x^2+2)^(1/2),x, algorithm="maxima")

[Out]

41/1225*sqrt(35)*arcsinh(3/2*sqrt(6)*x/abs(2*x + 3) - 2/3*sqrt(6)/abs(2*x + 3)) - 13/35*sqrt(3*x^2 + 2)/(2*x +
 3)

________________________________________________________________________________________

Fricas [A]  time = 1.77746, size = 198, normalized size = 3.6 \begin{align*} \frac{41 \, \sqrt{35}{\left (2 \, x + 3\right )} \log \left (-\frac{\sqrt{35} \sqrt{3 \, x^{2} + 2}{\left (9 \, x - 4\right )} + 93 \, x^{2} - 36 \, x + 43}{4 \, x^{2} + 12 \, x + 9}\right ) - 910 \, \sqrt{3 \, x^{2} + 2}}{2450 \,{\left (2 \, x + 3\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)/(3+2*x)^2/(3*x^2+2)^(1/2),x, algorithm="fricas")

[Out]

1/2450*(41*sqrt(35)*(2*x + 3)*log(-(sqrt(35)*sqrt(3*x^2 + 2)*(9*x - 4) + 93*x^2 - 36*x + 43)/(4*x^2 + 12*x + 9
)) - 910*sqrt(3*x^2 + 2))/(2*x + 3)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{x}{4 x^{2} \sqrt{3 x^{2} + 2} + 12 x \sqrt{3 x^{2} + 2} + 9 \sqrt{3 x^{2} + 2}}\, dx - \int - \frac{5}{4 x^{2} \sqrt{3 x^{2} + 2} + 12 x \sqrt{3 x^{2} + 2} + 9 \sqrt{3 x^{2} + 2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)/(3+2*x)**2/(3*x**2+2)**(1/2),x)

[Out]

-Integral(x/(4*x**2*sqrt(3*x**2 + 2) + 12*x*sqrt(3*x**2 + 2) + 9*sqrt(3*x**2 + 2)), x) - Integral(-5/(4*x**2*s
qrt(3*x**2 + 2) + 12*x*sqrt(3*x**2 + 2) + 9*sqrt(3*x**2 + 2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{x - 5}{\sqrt{3 \, x^{2} + 2}{\left (2 \, x + 3\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)/(3+2*x)^2/(3*x^2+2)^(1/2),x, algorithm="giac")

[Out]

integrate(-(x - 5)/(sqrt(3*x^2 + 2)*(2*x + 3)^2), x)